ELSEVIE

Journal of Chromatography A, 732 (1996) 335-343

JOURNAL OF
CHROMATOGRAPHY A

Diffusive analyte loss in capillary electrophoresis caused by delay
in field application

Christa L. Colyer, Jan C. Myland, Keith B. Oldham™

Department of Chemistry, Trent University, Peterborough, Ont. K9] 7B8, Canada

Received 14 June 1995; revised 31 October 1995; accepted 21 November 1995

Abstract

In capillary electrophoresis with sample injection into the capillary mouth, delay between returning the capillary to the
inlet reservoir and initiating solution mobilization allows analyte leakage by diffusion from the capillary mouth. This leakage
has been modelled on the basis of either convective or diffusive analyte dispersal and the models have been compared with
experimental results for peak diminution. Peak widths have also received attention and their utility in estimating analyte

amounts has been investigated.
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1. Introduction

In capillary electrophoresis, a standard procedure
is to introduce a sample of analyte solution into the
front end of the capillary, return the capillary to the
reservoir vessel containing running buffer, and im-
mediately turn on the high voltage. The slug of
analyte solution, of length L say, then slowly moves
down the capillary column by electroosmosis, arriv-
ing at the detector after some time interval At ..
the transit time. During its journey down the capil-
lary, the zone containing the analyte broadens as a
result of diffusion (and other, less easily modelled,
causes) and ceases to have sharp boundaries [1-6].
Moreover, the maximum concentration diminishes
from its original ¢* to a value that can be shown to
be
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where erf{ } denotes the error function and D is the
diffusivity (diffusion coefficient) of the analyte. For
example, using data appropriate to the experimental
results presented later in this article, if L=2.40X
107> m, D=9.00x10"""m* s™' and At,,,,, =405 s,
then L/4\/DAt,, ... = 0.994 and Cpeak =
c*erf{0.994}=0.840c*. The peak has decayed by
about 16%.

Of course there are several other phenomena that
may be responsible for loading less (or more) of the
analyte onto the column than simple principles
suggest. Though some of these effects may lead to
corrections of a larger magnitude than the leakage of
concern here, they will not be addressed further.
Moreover, leakage of any magnitude is not neces-
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sarily detrimental to the purposes of the electro-
phoretic experiment. Thus, for example, a lengthy
delay that is of the same duration in an analytical
experiment as in a calibration run may be innocuous.

The previous calculation of a 16% peak diminu-
tion assumes that the field is applied immediately
after the slug is implanted in the end of the capillary,
so that the total amount of analyte in the column
remains, 7rR2Lca, where R is the radius of the
capillary. However, from a variety of causes, deliber-
ate or accidental, there may be a delay of many
seconds, or even minutes, before the field is applied
and the slug starts its journey. If At is the
duration of the delay, then the peak will be lower
than that predicted by Eq. 1 for two reasons. First,
the time interval for the diffusive broadening and
peak lowering to have occurred is now longer by
Atye1ay- Second, there will be a leak of analyte from
the end of the capillary into the reservoir during the
interval before the imposition of the field [7]. This
document addresses two questions: (a) How much
analyte escapes during the delay? and (b) How much
lower than predicted by Eq. 1 will the peak now be?

We will investigate two extreme scenarios: when
the analyte diffusing from the capillary mouth is
dispersed by convection through the buffer solution
in the inlet reservoir, and when the dispersal mecha-
nism is by diffusive transport. Experimental results
will be compared with prediction (b) for each
scenario. Diffusive transport into the capillary can be
used as a means of sample injection [7].

A third interesting question, not directly
related to the other two, but conveniently
answered during our study is (c) how well obeyed is
the following ‘“‘rule of thumb” that is often used to
quantify analyte amounts?

(amount of analyte)
F(C pear J(AX .y Ncross-sectional area of capillary)

(2)
where Ax,., is the peak width (the length of
capillary between the two points at which c¢=1/

2¢,cq)- We can answer this question for the unde-
layed case by suitably analyzing the equation

1/2¢6° rf{l/ZL—x}+ 1/2¢° rf{l/2L +x}
C = C € - &) —
VADA: ¢ JADA
3)

which is presented by Delinger and Davis [4]. This
equation describes the shape of the peak formed by
diffusive broadening over an interval Af of a slug of
original concentration ¢® and length L. At x=
+0.5706L, this equation gives ¢=0.420c" when the
same values of L, D and Ar are used as previously.
This concentration is exactly half of ¢, so that
Ax,., =1.141L under these conditions. Hence the
product of (peak height) and (peak width) equals
0.959¢°L, indicating that rule (2) underestimates the
analyte amount by 4.1% in this case.

2. Experimental details and results

All experiments described herein were conducted
with an Isco (Lincoln, NE, USA) Model 3850
capillary electropherograph with on-column UV
absorbance detection at 190 nm. The high-voltage
power supply of this instrument was operated in
constant voltage (20.00 kV) mode. The humidity and
temperature inside the capillary compartment were
not closely controlled, although a fan inside the
compartment maintained good ambient circulation.
Electropherograms were recorded by a Hewlett-Pac-
kard Model HP-7046A x-y chart recorder, and peak
transit times, heights and widths were read directly
from the chart recordings.

A fused-silica capillary with an external polyimide
coating was employed in these studies (Isco). Nomi-
nal capillary dimensions were 50 wm 1.D., 156.5 um
wall thickness and 16 pum coating thickness, with a
measured total length and inlet-to-detector length of
58.3 cm and 33.5 cm, respectively. When not in use,
the capillary was filled with distilled, deionized
water. One hour prior to daily experimentation, the
capillary was refilled with fresh water. The capillary
was flushed and filled with running buffer just prior
to experimentation, but no flushing between runs was
conducted.

A phosphate running buffer, 20.0 mM in each of
KH,PO, and Na,HPO,, was used in these experi-
ments, and was prepared by dissolving reagent grade
chemicals (as received, Caledon, Georgetown, On-
tario, Canada) in distilled, deionized water. The pH
of this buffer, measured by a calibrated Fisher
Accumet pH Meter, was found to be 6.84 at 23°C.



C.L. Colyer et al. | J. Chromatogr. A 732 (1996) 335-343 337

Sodium benzoate (NaBz, Caledon) samples were
prepared by dissolving sufficient analyte in the
phosphate running buffer to produce a 1.00 mM
NaBz solution. All solutions were passed through a
cellulose acetate syringe filter (pore size 0.45 pum;
Nalge Company, Rochester, NY, USA) and were
degassed under vacuum by a water aspirator for
approximately 1 h prior to use.

The method of sample injection employed in these
studies was split-flow injection [8], which relies on a
small fraction of the volume dispensed (5 ul in these
experiments) by a microsyringe being deposited into
the capillary end, the majority being vented to waste
via a short length (L,.,,=50 mm) of comparatively
wide bore (R, =90 pum) tubing. According to the
manufacturer [9], the fraction injected is (L,.,,/
L) Repp/Rep)’, where L, and R, are the
capillary length and radius (583 mm and 25 um in
our experiments). This fraction works out to be 5.1
X 107" in our case, so that dispensing a 5.0 ul
volume would lead to an injected slug of 2.6 nl
volume and 1.3 mm length. However, we are scepti-
cal of this calculation. The formula giving the
fraction is based on Poiseuille’s Law which assumes
that streamlined flow has been achieved, whereas the
geometry of the injection port is not conducive to the
establishment of a streamlined flow regime. Others
[10,11] have found split-flow injection to be a source
of inaccuracy and variability. Our experiments sug-
gest that the volume injected in replicate dispensings
of 5.0 ul is variable, with the average being about
4.7 nl, rather than the 2.6 nl given by the formula.
The 4.7 nl volume is based upon comparing the
absorption spectrophotometric response of injected
analyte samples with those recorded when the capil-
lary is uniformly filled with analyte of known
concentration. An injected volume of 4.7 nl trans-
lates to a slug length of L=2.4 mm, which is the
figure used in our theoretical calculations.

The results of a large number of experiments,
using a variety of delay times are plotted as points in
Fig. 1 versus the square root of the delay time. The
ordinate is the experimental peak absorbance normal-
ized by the peak absorbance for a two-second delay,
this being the minimum feasible with our procedure.
The transit times, i.e. the time between switch-on
and the arrival of the peak at the detector was
effectively constant, in the 400-410 s range.
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Fig. 1. The points show experimental values of peak height as a
function of the delay time At between returning the injected
capillary mouth into the inlet reservoir and initiating solution
motion by applying the electric field. The lines show the resuits of
modelling the same process assuming convective (dashed line) or
diffusive (full line) transport of the leaking analyte. In all data, the
ordinate values have been normalized by division by the peak
height for a 2-s delay.

3. Model of leak with convective dispersion

The design of capillary electrophoresis instruments
is such that the loading of the sample slug takes
place with the capillary mouth out of the inlet buffer
reservoir. The capillary mouth must be reimmersed
before the field may be applied. Unless measures are
taken to prevent it, the act of reimmersion will cause
a significant degree of fluid motion in the reservoir,
at least temporarily. This convective mixing might
be enough to keep the analyte concentration at the
mouth of the column effectively zero. In that event,
the transport of analyte within the capillary tube
obeys Fick’s second law

2

=B 4)

subject to the following initial and boundary con-
ditions:
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c=c¢" 0<x<L,t=0 &)
c=0 x>L,t=0 (6)
c=0 x=0, allt @)
c>0 x—o, allt (&)

Here x is the axial distance coordinate, measured
from an origin at the mouth of the capillary. The
solution to this equation set was derived via Laplace
transformation [12]. It gives the analyte concen-
tration at any point x in the capillary as

c 1 L—x X
e R B =l
c 2\/DAty,,, 2\/DAt,,,,
1 f x+ L 9)
— —erfl ——=—
2 2\/DAty,,,

after a delay of At,,,,,. Note that we have treated the
analyte concentration as being uniform in each cross-
section of the capillary tube. In practice, the nonelec-
troosmotic flow accompanying injection will create a
parabolic front at the junction between the injectant
and the preexisting solution. This complication has
been ignored.

To answer question (a), we must predict what
fraction of the original analyte remains present in the
capillary at time Az, . This can be found by
comparing the value of the integral

n=7rR2fcdx ' (10)
(]

at the end of the delay period with the original
amount (moles) present, n0=7rR2caL. One finds

n L 2 DAtdelay l:
— =erf] —=—} - F\—2| 1
no 2 2Atdelay L -

.
~onl e | | an

For the values D=9.0 X 10 ' m?s™ !, L=2.40 X

10 m and a range of delay times, Eq. 11 predicts
the fractional losses reported in Table 1. Notice that
a significant percentage of the analyte is lost in the
first few seconds, but that over 25 min are required
for half the analyte to leak away. For small delay
times the formula

ng—n ~£ DAtdelay
ng AN (12)

is a good approximation for the fractional loss by
convection.

To answer question (b), we need to find the effect
of the delay on the peak height. Eq. 9 represents the
distribution of analyte at the time the field is
switched on. Though it is nc longer a “slug”, the
analyte travels down the capillary at a constant speed
towards the detector. During this journey — which
will take virtually the same length of time, the transit
time At,, ... as before — diffusive broadening occurs
and the concentration profile becomes wider and
lower. Using Eq. 9 as the starting point, it is not
simple to determine the peak concentration c.,,
analytically for any value of the delay time At,,,, .
This prediction of the peak concentration at the
detector is, however, easily made via the simulation
described in Appendix A. The calculation was

Table 1

Fraction of analyte leaking from the capillary end, during various
delay times, when convection (second column) or diffusion (third
column) is the operative dispersal mechanism

Atdclay/s 1—(n/n,)
Convection Diffusion

0 0 - 0
1 0.014 0.010
2 0.020 0.014
5 0.032 0.025
10 0.045 0.037
20 0.063 0.055
50 0.100 0.091
100 0.141 0.132
200 0.199 0.190
500 0.314 0.304
1000 0.430 0.420
2000 0.553 0.545
5000 0.697 0.691

®© 1 1
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carried out for a series of delay times but for a
constant transit time of 405 s. The results are
displayed as the broken line in Fig. 1. Note that the
only theoretical basis for choosing the square-root of
Aty),, as the abscissa of this graph comes from the
limiting formula (Eq. 12); the choice of the square-
root function was made mainly to optimize clarity.

4. Model of leak with diffusive dispersion

In this case, the analyte leaking from the capillary
is dispersed diffusively, so that the same transport
mechanism applies inside and outside the column. At
the mouth of the capillary, diffusion takes the analyte
in two directions: further into the capillary, which is
innocuous in the sense that this analyte will still
eventually reach the detector, and into the reservoir,
where it is effectively ““lost™.

As in Section 3, we consider diffusion within the
capillary, i.e. in zones I and II as illustrated in Fig. 2,
to be planar, obeying Fick’s second law in the form
of Eq. 4 and meeting all the previous boundary
conditions except (Eq.). In the reservoir, however,
we treat the diffusion as hemispherical and therefore
obeying the alternative form

—S+=—=— (13)

of Fick’s second law. Here r is the radial coordinate
directed into the reservoir vessel from an origin at
the centre of the inlet plane to the capillary. The
initial condition

Fig. 2. Diagram, not to scale, showing the geometry of the four
zones treated by the model with diffusive dispersion. Only zones I
and II are invoked by the model with convective dispersion. The
shaded region denotes the initial position of the analyte slug.

c=0 %=>r>R =0 (14)

(recall that R is the capillary’s inner radius) and the
boundary conditions at infinity

c—>0 r—oo, allt (15)

apply, as well as two other boundary conditions,
numbered (Eq. 16) and (Eq. 17), that will be
introduced in the next paragraph. The region r>R, in
which transport is appropriately described by these
equations of hemispherical diffusion, will be termed
zone 1V, as clarified in Fig. 2.

Unfortunately, the planar diffusion in the column
and the hemispherical diffusion in the reservoir
cannot be matched exactly, and there remains a small
region, which we designate zone 1II, that cannot be
ascribed to either region. This has a lenticular shape
bounded by the r=R hemisphere of zone IV and the
x=0 end plane of zone II. The volume of this region
is very small, which justifies the approximate treat-
ment that is accorded to zone III. This region
connects the end of the capillary which is a plane of
area 7R’ with the beginning of the region of
hemispherical diffusion, which has an area 27R’.
Thus the area changes by a factor of two. Therefore
it is reasonable to assume that the concentration
halves on proceeding from x=0 to r=R, so that

cw®it) = cpyyRt) = 1/2¢,,,(0,8) = 1/2¢,(0,8)  (16)

In a steady state, the total fluxes across x=0 and
r=R would have the same magnitude and we assume
this to be true generally. Since the area doubles, this
means that the flux density, and hence the con-
centration gradient, at r=R must have half the
magnitude of that at x=0. However, the signs of the
two gradients will differ, so that

dcqy _ deyy _ deyy

dr (R9t) - ar (Rst) - 1/2 ax (OJ)
— _ 1% 17
——IZOX(O,I) 17

Observe that we have ascribed no ‘“‘diffusive
impedance” or other property to zone IIl. In fact, we
shall have no occasion to mention this region again.

The problem is elaborate because of the four zones
involved. Nevertheless an exact solution may be
obtained by the Laplace transform method [12]. For
zone II, the solution, is
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Cy DA’delzy X \’/DAtdelay X
— =172 — t= fc 4 —————+
* eXP{ RS 2R 1/DA,,,,,
delay
DA, +L /DAt ., +L
_l/2exp{ d"y-(»x }erfc \__dl_y_',_'/t—,
4R 2R 2R 2\/DAy,,,

+erf a et —2E 4y jpe ] 12X
€ Ip—— e e £<) _—
{ 2\/DAty,, } 2/ DAty ,, 2/DAty,,,

(18)

where erfc{ } signifies the error function complement,
1—erf{ }. This solution also applies to zone 1. Notice
that the final three terms, which do not involve the
capillary radius, are identical with the three right-
hand terms in Eq. 9 for the convective case.

First, we calculate the fraction of the total analyte
that is lost. We could find this by a spatial integration
of Eq. 18. It is easier, however, to answer question
(a) by performing a temporal integration of the flux
of analyte across the x=0 plane:

Algelay
ng—n D J'
n, L

0

0.0 dr (19)

The method used to evaluate this integral again
relies on Laplace transformation. The solution may
be expressed most concisely in terms of the two
dimensionless parameters

DAt At
p= ¥ ® 2\/2.7(176;; (20)
and
_ L A /1600 s
7" 2\/% B Alyeray @b
so that
L
P4=3gr = 24.00 (22)

The numerical values above are based on our
standard values D=9.0 X 107" m* s~ ', L=2.40 X
107> m and R=2.5 X 10~° m. In terms of the p and
g parameters, the integral in Eq. 19 evaluates [12] to

non:n ,N—[l —exp{ — )] + P L ertof)
=~ apgtl —explp }erfc{p}]
+exp{p’ + 2pglerfe{p + g} (23)

Calculations based on this equation led to the
values listed in the final column of Table 1, which
presents the fractional analyte loss for a variety of
delay times when the loss is due to diffusion from
the capillary end. The early values in this column are
well approximated by the formula

ny—n 2| 4/DAty,, R’ L
0 ~ = delay + = (24)
n, L ™ A /DA[delay R

Notice that our derivation has neglected the fact
that the diffusion process out of and along the
capillary is occurring simultaneously with solution
flow into and through the capillary. This neglect is
only important inasmuch as the flow will perturb
somewhat the concentration distribution near the
mouth of the capillary, and we believe that such an
effect will be minor.

As expected, Table 1 demonstrates a greater effect
with convective dispersion than with diffusive dis-
persion, but the relative difference is small except for
short delay times. In practice, one might expect that
the paramount dispersion mechanism would be con-
vection initially but that the agitation which gives
rise to convective mixing would die down after some
seconds, leaving diffusion as the operative mecha-
nism. In any event, errors introduced by the model-
ling process probably exceed in magnitude the
differences between the two sets of results.

Eq. 18, which describes the concentration profile
in the capillary at the end of the delay period, must
be used to calculate the peak height diminution
caused by the delay in applying the field. Once more,
we resorted to the simulation method that is ex-
plained in Appendix A, using various values of the
delay interval Az,,,, . The results are reported as the
full line in Fig. 1. As might be expected on the basis
of Table 1, there is little difference between the two
theoretical lines.

As explained in Appendix A, the simulation was
also used to provide data on the peak width, which
enabled us to answer question (c). Surprisingly, we
found that initially the delay lessens the peak width,
presumably because the leak sharpens the initial
profile. The peak widths and the peak heights
provided by the simulation of the diffusive leak are
listed in the second and third columns of Table 2, as
normalized equivalents. The fourth column is the
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Table 2

Data to test the ‘“‘rule of thumb”. (See text for details)
Aty !s Axpu /L Cpear€” (ning)g, ning)e, Ratio
0 1.141 0.8401 0.959 1.000 0.959
2 1.133 0.8333 0.944 0.986 0.957
5 1.128 0.8277 0.934 0.975 0.958
10 1.122 0.8205 0.921 0.963 0.956
20 1.117 0.8087 0.903 0.945 0.956
50 1.110 0.7803 0.866 0.909 0.953
100 1.112 0.7414 0.825 0.868 0.950
200 1.133 0.6772 0.767 0.810 0.948
500 1.219 0.5389 0.657 0.696 0.944
1000 1.360 0.4020 0.547 0.580 0.943
2000 1.611 0.2667 0.430 0.455 0.945
5000 2215 0.1328 0.294 0.309 0.951

product of the two preceding columns and would
equal the fraction n/n, of analyte in the capillary if
the “rule of thumb”, Eq. 2, were obeyed. The
correct value of the n/n, fraction is available from
Table 1 and has been entered into a fifth column of
Table 2. Observe that the rule of thumb gives
consistently low values, as indicated in the sixth
column of the table, which is the quotient of the data
in the fourth and fifth columns. This ratio slowly
falls from an initial value of 0.959 and reaches a
minimum value of 0.943 before again increasing.
Observe that the ratio is consistently larger than
0.939, a number whose significance will now be
demonstrated.

A gaussian distribution with a standard deviation
of o has a concentration profile described by the

equation
(x - xpcak )2
clx) = Cpeak€XP)] — T 2%5)
and a total analyte content of
n=nR’ J c(x) dx =N27oR ¢ .,y (26)

Any localized distribution will eventually ap-
proach such a distribution if planar diffusion is the
only dispersive mechanism. At locations a distance
o'VIn{4} on either side of the peak, one finds

In{4 Cpea
C(x = xpeaktm) = CPeak CXP{ ng } } B p2 k
(27)

and therefore the peak width is 20V/In{4}. Multipli-
cation by szcpeak, followed by elimination of o
with the help of Eq. 26, leads to

szcpeakAxpeak =20V In{4}7R%c

In{4}
=2n S (28)

From the initial conditions, we know that,
7R’c’L=n,, and division of Eq. 28 by that relation-
ship leads to

Soem Boems _ gﬁ\/—*m{z} = 0.9394—
c L ng, T ngy

Hence, for a gaussian distribution of concentra-
tion, the rule of thumb underestimates the quantity of
analyte by about 6%. Better ways of estimating the
area under gaussian, and other, peaks are discussed
by Dyson [13].

(29)

5. Conclusions

Comparison of the two models shows that convec-
tion and diffusion are almost equally effective in
fostering a leak of analyte from the mouth of the
capillary during the delay prior to electrolyte mobili-
zation in capillary electrophoresis. About 3% of the
analyte is lost, under typical conditions, during a 5 s
delay and about 10% if 1 m elapses before field
application. The corresponding diminutions of peak
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height are, however, not proportional to the loss,
being 1.5% and 8% respectively in these examples.

We are not proud of the theory/experiment corre-
lation in Fig. 1, the scatter in which we attribute to
irreproducibility in the split-flow injector. Neverthe-
less, there is clear qualitative agreement and no
conflict between either model and the experimental
results.

The product of peak height and peak width, after
peak distortion due to leakage and further delay
during electroosmotic transit through the capillary,
underestimates the analyte content by 4-6% under
the conditions of our experiments. The figure of 6%
is appropriate to a gaussian distribution.
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Appendix A

A simulation involving a single spatial dimension
can provide an answer to the question of how a
profile existing within the capillary at =0 will
evolve as it travels down the column, reaching the
detector after a time interval Ar, .. Our prime
interest is in what the peak height will be after
At ...i,- Because we are considering only diffusive
broadening, our model need not explicitly invoke the
motion of the solution down the tube. All that is
needed is to transpose the initial profile c¢(x,0) into an
infinite tube (or, in practice one with x values
ranging from —x_, through zero to x_, ) and allow
diffusive transport to occur. Simulations with similar
goals were carried out by Dose and Guiochon [7].

Our simulation was based on 2000 spatial ele-
ments, each corresponding to a length 8x of 1.000 X
107> m, so that x_,=1.000 X 107> m. These
elements are indexed O through 1999 with those
indexed 880 through 1119 corresponding to the
initial location of the slug, 0<x< L. The small length
element indexed j corresponds to

(j—1000)X 10 m<x<(j—999)X 10 °m
(30)

The simulation uses 8100 time intervals, each of
duration 6r=0.05000 s to cover the 405 s of transit
time.

To initialize the simulation, each spatial element is
accorded a value v so that the j * element has value v;
equal to the concentration in the centre of the
element divided by c”. Thus

_c(x,0)

U; a
70 c

where x = (j — 879.5) X 10> m

(31)
For j=879, all v, , values are zero.

During the simulation, each v value is updated
8100 times by iteration of the formula

2Dét Dét
Uik+r = 1= (5x)2 Vi T (6x)2[vj—l,k + vj+l,k]

(32)

which derives from the discretized version of Fick’s
second law. There are no exceptions to this formula.
With the chosen value D=9.0 X 10™'°m?s™' of the
analyte’s diffusivity, the composite constant D&t/
(6x)” has a value of 0.45, which meets the stability
criterion of being less than 0.5.

After 8100 iterations the array of v values is
searched to find the element with maximal v value,
which roughly corresponds to the peak concentration
at the detector after the transit time has elapsed. A
quadratic fit to the v values of the peak element and
those of its two immediate neighbours gives an
improved v,.,. The peak width is found by: (i)
identifying the two neighbouring elements, beyond
the peak, such that the nearer one has v>v,.,, /2
whereas the further one has v<v_,, /2; (ii) making a
linear interpolation to locate the x value at which
V=V, (i) finding the two adjacent elements
before the peak such that v, lies between their v
values; (iv) interpolating to find the exact location of
the point at which the concentration is half its peak
value; and (v) subtracting the two x values to find

eak*

}grior to using this simulation to investigate the
initial profiles described by Eq. 9 and Eq. 18, we
tested the algorithm by using the slug profile given
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by Eq. 1. The peak concentration was found to be
0.8401c¢*, which is to be identical to the exact value,
c*erf{L/4~/Dt} = 0.8401c*. Likewise the peak width
Ax ., measured as 2.741 mm, compared well with
the exact value 2.739 mm.
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